مرحبًا بالجميع، بعد فترة توقف طويلة، يسرنا أن نعلن عن عودة فصل بيرايوس في PyData مع **لقاءنا الافتراضي الرابع**! انضموا إلينا يوم **الجمعة، 19 سبتمبر**، الساعة **7 مساءً**، في جلسة شيقة مع **فلاديمير-فاديم يوركوفسكي**، الذي سيعرض موضوع **التنبؤ الحديث بالسلاسل الزمنية**! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بالسلاسل الزمنية باستخدام خوارزميات تعلّم الآلة الشهيرة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي، ونوضح كيفية إنشاء سمات النافذة والسمات المؤجلة، بالإضافة إلى السمات التي تلتقط العناصر الموسمية والاتجاهات. سنغطي أفضل الممارسات لتشفير المتغيرات الفئوية، وتحليل السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز المتعلق بالمعرفة المسبقة (look-ahead bias). بالإضافة إلى ذلك، سنلمس موضوعات أكثر تقدمًا مثل التنبؤ بالطلبات المتقطعة (intermittency) والتنبؤ الهرمي (hierarchical forecasting). كما ستنفذ الجلسة في أساليب التحقق المتقاطع - تحديدًا أساليب الاختبار الخلفي (backtesting) المناسبة للبيانات الزمنية. وسنتناول لماذا لا يناسب أسلوب التحقق المتقاطع التقليدي (K-fold) المجموعات البيانات المعتمدة على الزمن، وسنشير إلى الطرق البديلة مع مناقشة إيجابياتها وسلبياتها. وأخيرًا، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويتضمن ذلك نظرة شاملة على مقاييس الخطأ، وتحليل نقاط القوة والضعف فيها، والسياقات التي يجب استخدام كل مقياس فيها. **نبذة عن المحاضر:** فلاديمير هو عالم بيانات أولي متخصص في تطوير الحلول المتكاملة، ويتمتع بخبرة واسعة في تعلم الآلة والإحصاءات والبرمجة وتكنولوجيات الحوسبة السحابية. تشمل اهتماماته البحثية التنبؤ بالتسعير، ومعالجة اللغة الطبيعية (NLP)، والتعلم الآلي القابل للتفسير. خارج العمل، يستمتع بالسفر، وحل التحديات الخوارزمية على منصة LeetCode، والانخراط أكثر في الأبحاث المتعلقة بتعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضموا إلينا في اللقاء يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع لرؤيتكم! فريق التنظيم