جميعهم يبنون وكلاء الذكاء الاصطناعي - ولكن في المحور يوجد النموذج اللغوي الكبير، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة ومبنية على البيانات؟ في هذا الجلسة، سنغوص في اختيار النماذج اللغوية الكبيرة. وسنزود بنتائج دراسة جرى فيها اختبار 15 نموذجًا رائدة في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل التوسع في العبارات، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع أن تقدم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والإثارة الإعلامية - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة للبرمجة، ومساعدات المطورين، والوكلاء متعددي الوسائط.