يعمل الجميع على بناء وكلاء ذكاء اصطناعي - ولكن في المحور الأساسي توجد النماذج اللغوية الكبيرة (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة وقائمة على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنزود بنتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل الإسهاب، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نُتوقع أن تحصلوا على رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والإعلانات المبالغ فيها - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة البرمجة، والمساعدين الرقميين للمطورين، والوكلاء متعددي الوسائط.