مرحبًا بالجميع، بعد توقف طويل، يسرنا أن نعلن عن عودة فصل PyData بيرايوس مع **الاجتماع الافتراضي الرابع**! انضموا إلينا يوم **الجمعة، 19 سبتمبر** الساعة **7 مساءً** في جلسة شيقة مع **فلاديمير-فاديم يوركوفسكي**، الذي سيقدم عرضًا حول **التنبؤ الحديث بسلاسل الزمن**! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بسلاسل الزمن باستخدام خوارزميات تعلم الآلة الشائعة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي ونوضح كيفية إنشاء سمات النافذة والتأخير، بالإضافة إلى السمات التي تلتقط الموسمية والاتجاهات. وسنتناول أفضل الممارسات لترميز المتغيرات الفئوية، وتحليل السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز المسبق. بالإضافة إلى ذلك، سنلمس مواضيع أكثر تقدمًا مثل التقطع والتنبؤ الهرمي. كما ستنخرط الجلسة في طرق التحقق المتقاطع - تحديدًا طرق الاختبار الخلفي المناسبة للبيانات الزمنية. وسنتناول لماذا لا يصلح التحقق المتقاطع التقليدي (K-fold) للبيانات المعتمدة على الزمن، ونسلط الضوء على الطرق البديلة مع مناقشة مزاياها وعيوبها. وأخيرًا، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويشمل ذلك نظرة شاملة على مقاييس الخطأ، ومناقشة نقاط قوتها وضعفها والسياقات التي ينبغي استخدام كل مقياس فيها. **السيرة الذاتية:** فلاديمير هو عالم بيانات أولي كامل المجموعة، يتمتع بخبرة واسعة في تعلم الآلة والإحصاء والبرمجة وتكنولوجيا الحوسبة السحابية. تشمل اهتماماته البحثية التنبؤ والتسعير ومعالجة اللغة الطبيعية (NLP) وتعلم الآلة القابل للتفسير. خارج العمل، يستمتع بالسفر وحل التحديات الخوارزمية على LeetCode، والانغماس أكثر في أبحاث تعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضموا إلينا في الاجتماع يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع إلى رؤيتكم! فريق التنظيم