مرحبًا بالجميع، بعد فترة توقف طويلة، يسرنا أن نعلن عن عودة فصل بياتا بيرايوس مع لقائنا الافتراضي الرابع! انضموا إلينا يوم الجمعة، 19 سبتمبر، الساعة 7 مساءً، في جلسة شيقة مع فلاديمير-فاديم يوركوفسكي، الذي سيقدم عرضًا حول التنبؤ الحديث بالسلاسل الزمنية! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بالسلاسل الزمنية باستخدام خوارزميات تعلم آلي شهيرة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي، ونوضح كيفية إنشاء سمات النافذة والسمات المتأخرة، بالإضافة إلى السمات التي تلتقط الموسمية والاتجاهات. وسنتناول أفضل الممارسات لترميز المتغيرات الفئوية، وتحليل السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز المتعلق بالمعرفة المقدمة (look-ahead bias). بالإضافة إلى ذلك، سنلمس موضوعات أكثر تقدمًا مثل التقطع والتوقعات الهرمية. كما ستتعمق الجلسة في أساليب التحقق المتقاطع، وتحديدًا أساليب الاختبار الخلفي المناسبة للبيانات الزمنية. وسنتناول لماذا لا يناسب أسلوب التحقق المتقاطع التقليدي (K-fold) المجموعات البيانات المعتمدة على الزمن، وسنشير إلى الطرق البديلة مع مناقشة إيجابياتها وسلبياتها. وأخيرًا، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويشمل ذلك نظرة شاملة على مقاييس الخطأ، ومناقشة نقاط القوة والضعف فيها، والسياقات التي يجب استخدام كل مقياس فيها. **السيرة الذاتية:** فلاديمير هو عالم بيانات كبير بخبرة واسعة في تعلم الآلة والإحصاء والبرمجة وتكنولوجيات الحوسبة السحابية. تشمل اهتماماته البحثية التنبؤ بالتسعير، ومعالجة اللغة الطبيعية (NLP)، وتعلم الآلة القابل للتفسير. خارج العمل، يستمتع بالسفر، وحل التحديات الخوارزمية على منصة LeetCode، والغوص أعمق في أبحاث تعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضموا إلينا في اللقاء يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع إلى رؤيتكم! فريق التنظيم