جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في المقام الأول يأتي النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة وقائمة على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. سنشارك نتائج دراسة اختبرت 15 نموذجًا رائدة في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل التفاصيل الزائدة، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع تقديم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والضجة الإعلامية - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة في البرمجة، ومساعدين للمطورين، ووكلاء متعددي الوسائط.