مرحبًا بالجميع، بعد فترة توقف طويلة، يسرنا أن نعلن عن عودة فصل PyData Piraeus مع لقائنا الافتراضي الرابع! انضموا إلينا يوم الجمعة، 19 سبتمبر، الساعة 7 مساءً، في جلسة شيقة مع فلاديمير-فاديم يوركوفسكي، الذي سيقدم عرضًا حول التنبؤ الحديث بالسلاسل الزمنية! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بالسلاسل الزمنية باستخدام خوارزميات تعلم الآلة الشهيرة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي، ونوضح كيفية إنشاء سمات النوافذ والتأخير، بالإضافة إلى السمات التي تلتقط الموسمية والاتجاهات. سنتناول أفضل الممارسات لتشفير المتغيرات الفئوية، وتحليل السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز إلى الأمام. بالإضافة إلى ذلك، سنلمس مواضيع أكثر تقدمًا مثل التقطع والتنبؤ الهرمي. كما ستنخرط الجلسة في طرق التحقق المتقاطع - على وجه التحديد طرق الاختبار الخلفي المناسبة لبيانات السلاسل الزمنية. سنفحص لماذا لا يناسب التحقق المتقاطع التقليدي باستخدام K-fold لمجموعات البيانات المعتمدة على الزمن، ونسلط الضوء على الطرق البديلة مع مناقشة ميزاتها وعيوبها. وأخيرًا، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويشمل ذلك نظرة شاملة على مقاييس الخطأ، ومناقشة نقاط قوتها وضعفها والسياقات التي يجب استخدام كل مقياس فيها. **السيرة الذاتية:** فلاديمير هو عالم بيانات أولي كامل المجموعة، يتمتع بخبرة واسعة في تعلم الآلة والإحصاءات والبرمجة وتكنولوجيا السحابة. تشمل اهتماماته البحثية التنبؤ، والأسعار، ومعالجة اللغة الطبيعية (NLP)، وتعلم الآلة القابل للتفسير. خارج العمل، يستمتع بالسفر، وحل التحديات الخوارزمية على LeetCode، والانخراط أكثر في أبحاث تعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضموا إلينا في اللقاء يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع إلى رؤيتكم! فريق التنظيم