جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في المحور يوجد النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة وقائمة على البيانات؟ في هذا الجلسة، سنغوص في عملية اختيار النماذج اللغوية الكبيرة. سنشارك نتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل الطول الزائد، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع تقديم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء الاختبارات القياسية والتضخيم الإعلامي - وما يعنيه ذلك لبناء أدوات مساعدة في البرمجة، ومساعدات المطورين، والوكلاء متعددي الوسائط.