مرحباً بالجميع، بعد فترة توقف طويلة، يسرنا أن نعلن عن عودة فصل PyData بيرايوس مع لقائنا الافتراضي الرابع! انضموا إلينا يوم الجمعة، 19 سبتمبر، الساعة 7 مساءً، في جلسة شيقة مع فلاديمير-فاديم يوركوفسكي، الذي سيقدم عرضاً حول التنبؤ الحديث بالسلاسل الزمنية! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بالسلاسل الزمنية باستخدام خوارزميات تعلم الآلة الشهيرة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي، ونوضح كيفية إنشاء ميزات النوافذ والتراجع، بالإضافة إلى الميزات التي تلتقط المواسم والاتجاهات. سنتناول أفضل الممارسات لتشفير المتغيرات الفئوية، وتحليل السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز المتعلق بالمعرفة المسبقة. بالإضافة إلى ذلك، سنلمس مواضيع أكثر تقدماً مثل التقطع والتنبؤ الهرمي. ستتعمق الجلسة أيضاً في طرق التحقق المتقاطع - تحديداً طرق الاختبار الخلفي المناسبة لبيانات السلاسل الزمنية. وسنتناول لماذا لا يناسب التحقق المتقاطع التقليدي باستخدام K-fold المجموعات البيانات المعتمدة على الزمن، وسنشير إلى الطرق البديلة مع مناقشة مزاياها وعيوبها. وأخيراً، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويشمل ذلك نظرة شاملة على مقاييس الخطأ، ومناقشة نقاط القوة والضعف لكل منها، والسياقات التي ينبغي استخدام كل مقياس فيها. **السيرة الذاتية:** فلاديمير هو عالم بيانات أولي كامل المجموعة، يتمتع بخبرة واسعة في تعلم الآلة والإحصاءات والبرمجة وتكنولوجيات الحوسبة السحابية. تشمل اهتماماته البحثية التنبؤ، والتسعير، ومعالجة اللغة الطبيعية (NLP)، وتعلم الآلة القابل للتفسير. خارج العمل، يستمتع بالسفر، وحل التحديات الخوارزمية على LeetCode، والغوص في الأبحاث المتعلقة بتعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضموا إلينا في اللقاء يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع إلى رؤيتكم! فريق التنظيم