مرحبًا بالجميع، بعد استراحة طويلة، يسرنا أن نعلن عن عودة فصل PyData Piraeus مع **اللقاء الافتراضي الرابع**! انضموا إلينا يوم **الجمعة، 19 سبتمبر** الساعة **7 مساءً** في جلسة شيقة مع **Vladimir-Vadim Iurcovschi**، الذي سيقدم عرضًا حول **التنبؤ الحديث بالسلاسل الزمنية**! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بالسلاسل الزمنية باستخدام خوارزميات تعلم الآلة الشهيرة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي، ونوضح كيفية إنشاء سمات النافذة والسمات المتأخرة، بالإضافة إلى السمات التي تلتقط الموسمية والاتجاهات. سنغطي أفضل الممارسات لترميز المتغيرات الفئوية، وتحليل السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز المسبق. بالإضافة إلى ذلك، سنلقي نظرة على مواضيع أكثر تقدمًا مثل التنبؤ العرضي والتنبؤ الهرمي. كما ستتناول الجلسة طرق التحقق المتقاطع - تحديدًا طرق الاختبار الخلفي المناسبة لبيانات السلاسل الزمنية. وسنتناول السبب وراء عدم ملاءمة التحقق المتقاطع التقليدي (K-fold) لمجموعات البيانات المعتمدة على الزمن، ونسلط الضوء على الطرق البديلة مع مناقشة مزاياها وعيوبها. وأخيرًا، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويشمل ذلك نظرة شاملة على مقاييس الخطأ، ومناقشة نقاط القوة والضعف لكل مقياس، والسياقات التي ينبغي استخدام كل منها فيها. **السيرة الذاتية:** فلاديمير هو عالم بيانات كبير بشق كامل (Full-Stack) يتمتع بخبرة واسعة في تعلم الآلة والإحصاءات والبرمجة وتكنولوجيات الحوسبة السحابية. تشمل اهتماماته البحثية التنبؤ، وتحديد الأسعار، ومعالجة اللغة الطبيعية (NLP)، وتعلم الآلة القابل للتفسير. خارج العمل، يستمتع بالسفر، وحل التحديات الخوارزمية على LeetCode، والانخراط أكثر في الأبحاث المتعلقة بتعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضموا إلينا في اللقاء يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع لرؤيتكم! فريق التنظيم