جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في الجوهر هناك نموذج اللغة الكبير، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة ومبنية على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار نماذج اللغة الكبيرة. وسنشارك نتائج دراسة اختبرت 15 نموذجًا رائداً في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل التوسع في العبارات، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع تقديم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء الاختبارات القياسية والإثارة الإعلامية - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة البرمجة، والمساعدين البرمجيين، والوكلاء متعددي الوسائط.