جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في المقام الأول يأتي النموذج اللغوي الكبير (LLM)، واختيار النموذج الصحيح أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة ومبنية على البيانات؟ في هذه الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنشارك نتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل حجم النص الناتج، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع أن تقدم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والضجة الإعلامية - وما يعنيه ذلك بالنسبة لبناء مساعدين برمجيين، ومساعدين مطورين، ووكلاء متعددي الوسائط.