جميعهم يبنون وكلاء الذكاء الاصطناعي - ولكن في المقام الأول يأتي النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مستنيرة ومبنية على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنشارك نتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل الإسهاب، زمن الانتظار، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع أن تُظهر رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والضجة الإعلامية - وماذا يعني ذلك بالنسبة لبناء أدوات مساعدة في البرمجة، ومساعدين للمطورين، ووكلاء متعددي الوسائط.