جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في المحور يكمن النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة ومبنية على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. سنشارك نتائج دراسة قمنا بها لاختبار 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل حجم الإخراج، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع أن نقدم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء مقاييس الأداء العامة والضجة الإعلامية - وما يعنيه ذلك لبناء مساعدين برمجيين، ومساعدين مطورين، ووكلاء متعددي الوسائط.