مرحباً بالجميع، بعد توقف طويل، يسعدنا أن نعلن عن عودة فصل PyData بيرايوس مع **الاجتماع الافتراضي الرابع**! انضموا إلينا يوم **الجمعة، 19 سبتمبر**، الساعة **7 مساءً**، في جلسة شيقة مع **فلاديمير-فاديم يوركوفسكي**، الذي سيقدم عرضاً حول **التنبؤ الحديث بسلاسل الوقت**! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بسلاسل الوقت باستخدام خوارزميات تعلم الآلة الشهيرة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي، ونوضح كيفية إنشاء سمات النوافذ والسمات المؤجلة، بالإضافة إلى السمات التي تلتقط الموسمية والاتجاهات. سنغطي أفضل الممارسات لتشفير المتغيرات الفئوية، وتحليل السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز إلى الأمام. بالإضافة إلى ذلك، سنلمس مواضيع أكثر تقدماً مثل التقطع والتنبؤ الهرمي. كما سينتقل اللقاء إلى طرق التحقق المتقاطع - تحديداً طرق الاختبار الخلفي المناسبة لبيانات السلاسل الزمنية. وسنفحص لماذا لا يناسب التحقق المتقاطع التقليدي باستخدام K-fold البيانات المعتمدة على الزمن، ونسلط الضوء على الطرق البديلة مع مناقشة مزاياها وعيوبها. وأخيراً، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويشمل ذلك نظرة شاملة على مقاييس الخطأ، مناقشة نقاط قوتها وضعفها والسياقات التي ينبغي استخدام كل مقياس فيها. **السيرة الذاتية:** فلاديمير هو عالم بيانات أولي كامل المجموعة (Full-Stack)، يتمتع بخبرة واسعة في تعلم الآلة والإحصاءات والبرمجة وتكنولوجيات الحوسبة السحابية. تشمل اهتماماته البحثية التنبؤ بالتسعير، ومعالجة اللغة الطبيعية (NLP)، والتعلم الآلي القابل للتفسير. خارج العمل، يستمتع بالسفر، وحل التحديات الخوارزمية على LeetCode، والغوص في الأبحاث المتعلقة بتعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضموا إلينا في الاجتماع يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع لرؤيتكم! فريق التنظيم