مرحبًا بالجميع، بعد توقف طويل، يسرنا أن نعلن عن عودة فصلية PyData بيرايوس مع **لقاءنا الافتراضي الرابع**! انضم إلينا يوم **الجمعة، 19 سبتمبر** الساعة **7 مساءً** في جلسة شيقة مع **فلاديمير-فاديم يوركوفسكي**، الذي سيقدم عرضًا حول **التنبؤ الحديث بالسلاسل الزمنية**! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بالسلاسل الزمنية باستخدام خوارزميات تعلم الآلة الشهيرة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي ونوضح كيفية إنشاء سمات النافذة والسمات المؤجلة، بالإضافة إلى السمات التي تلتقط الموسمية والاتجاهات. وسنغطي أفضل الممارسات لترميز المتغيرات الفئوية، وتفكيك السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز القائم على المعرفة المسبقة. بالإضافة إلى ذلك، سنلمس موضوعات أكثر تقدمًا مثل التقطع والتنبؤ الهرمي. كما ستتعمق الجلسة في أساليب التحقق المتقاطع - على وجه التحديد أساليب الاختبار الخلفي المناسبة لبيانات السلاسل الزمنية. وسنفحص لماذا لا يناسب التحقق المتقاطع التقليدي باستخدام K-fold للبيانات المعتمدة على الزمن، ونسلط الضوء على الأساليب البديلة مع مناقشة إيجابياتها وسلبياتها. وأخيرًا، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويشمل ذلك نظرة شاملة على مقاييس الخطأ، ومناقشة نقاط القوة والضعف فيها، والسياقات التي يجب استخدام كل مقياس فيها. **نبذة عن المحاضر:** فلاديمير هو عالم بيانات أولي متخصص في تطوير الواجهة الأمامية والخلفية، يتمتع بخبرة واسعة في تعلم الآلة والإحصاءات والبرمجة وتكنولوجيا الحوسبة السحابية. تشمل اهتماماته البحثية التنبؤ بالتسعير، ومعالجة اللغة الطبيعية (NLP)، وتعلم الآلة القابل للتفسير. خارج العمل، يستمتع بالسفر وحل التحديات الخوارزمية على LeetCode، ويغوص أكثر في أبحاث تعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضم إلينا في اللقاء الافتراضي يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع إلى رؤيتكم! فريق التنظيم