مرحباً بالجميع، بعد توقف طويل، يسرنا أن نعلن عن عودة فصل PyData بيرايوس مع لقائنا الافتراضي الرابع! انضموا إلينا يوم الجمعة، 19 سبتمبر، الساعة 7 مساءً، في جلسة شيقة مع فلاديمير-فاديم يوركوفسكي، الذي سيعرض موضوع التنبؤ الحديث بالسلاسل الزمنية! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بالسلاسل الزمنية باستخدام خوارزميات تعلم الآلة الشهيرة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي، ونوضح كيفية إنشاء سمات النافذة والسمات المؤجلة، بالإضافة إلى السمات التي تلتقط الموسمية والاتجاهات. سنتناول أفضل الممارسات لتشفير المتغيرات الفئوية، وتحليل السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز المسبق. بالإضافة إلى ذلك، سنلمس مواضيع أكثر تقدماً مثل التقطع والتنبؤ الهرمي. ستتعمق الجلسة أيضاً في أساليب التحقق المتقاطع - تحديداً أساليب الاختبار الخلفي المناسبة لبيانات السلاسل الزمنية. وسنفحص لماذا لا يناسب التحقق المتقاطع التقليدي بتقسيم K البيانات المعتمدة على الزمن، وسنبرز الطرق البديلة مع مناقشة إيجابياتها وسلبياتها. وأخيراً، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويشمل ذلك نظرة شاملة على مقاييس الخطأ، مناقشة نقاط القوة والضعف فيها، والسياقات التي ينبغي استخدام كل مقياس فيها. **السيرة الذاتية:** فلاديمير هو عالم بيانات أول متعدد المهارات، يتمتع بخبرة واسعة في تعلم الآلة والإحصاءات والبرمجة وتكنولوجيات الحوسبة السحابية. تشمل اهتماماته البحثية التنبؤ، التسعير، ومعالجة اللغة الطبيعية (NLP)، وتعلم الآلة القابل للتفسير. خارج العمل، يستمتع بالسفر، وحل التحديات الخوارزمية على LeetCode، والانخراط أكثر في أبحاث تعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضموا إلينا في اللقاء يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع لرؤيتكم! فريق التنظيم