مرحباً بالجميع، بعد استراحة طويلة، يسرنا أن نعلن عن عودة فرع PyData بيرايوس مع **لقاءنا الافتراضي الرابع**! انضموا إلينا يوم **الجمعة، 19 سبتمبر**، الساعة **7 مساءً**، في جلسة شيقة مع **فلاديمير-فاديم يوركوفسكي**، الذي سيقدم عرضاً حول **التنبؤ الحديث بالسلاسل الزمنية**! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بالسلاسل الزمنية باستخدام خوارزميات تعلم الآلة الشهيرة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي، ونوضح كيفية إنشاء سمات النافذة والسمات المتأخرة، فضلاً عن السمات التي تلتقط الموسمية والاتجاهات. وسنغطي أفضل الممارسات لترميز المتغيرات الفئوية، وتحليل السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز المتعلق بالمعرفة المسبقة (look-ahead bias). بالإضافة إلى ذلك، سنلمس مواضيع أكثر تقدماً مثل التقطع (intermittency) والتنبؤ الهرمي (hierarchical forecasting). كما ستتعمق الجلسة في أساليب التحقق المتقاطع - وتحديداً طرق الاختبار الخلفي (backtesting) المناسبة للبيانات الزمنية. وسنتناول لماذا لا يناسب التحقق المتقاطع التقليدي (K-fold) المجموعات البيانات المعتمدة على الزمن، ونسلط الضوء على الطرق البديلة مع مناقشة إيجابياتها وسلبياتها. وأخيراً، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويشمل ذلك نظرة شاملة على مقاييس الخطأ، ومناقشة نقاط القوة والضعف فيها، والسياقات التي ينبغي استخدام كل مقياس فيها. **السيرة الذاتية:** فلاديمير هو عالم بيانات كبير متعدد التخصصات، يتمتع بخبرة واسعة في تعلم الآلة والإحصاءات والبرمجة وتكنولوجيات الحوسبة السحابية. تشمل اهتماماته البحثية التنبؤ، والتسعير، ومعالجة اللغة الطبيعية (NLP)، وتعلم الآلة القابل للتفسير. خارج العمل، يستمتع بالسفر، وحل التحديات الخوارزمية على LeetCode، والغوص أكثر في أبحاث تعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضموا إلينا في اللقاء يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع إلى رؤيتكم! فريق التنظيم