مرحباً بالجميع، بعد فترة توقف طويلة، يسرنا أن نعلن عن عودة فصل بيريوس في PyData مع **اللقاء الافتراضي الرابع**! انضموا إلينا يوم **الجمعة، 19 سبتمبر** الساعة **7 مساءً** في جلسة شيقة مع **فلاديمير-فاديم يوركوفسكي**، الذي سيقدم عرضاً حول **التنبؤ الحديث بالسلاسل الزمنية**! **الملخص:** في هذا البرنامج التعليمي، سنستعرض مجموعة من تقنيات هندسة السمات للتنبؤ بالسلاسل الزمنية باستخدام خوارزميات شائعة في تعلم الآلة مثل XGBoost وLightGBM وCatBoost. سنبدأ بتحويل بيانات السلاسل الزمنية إلى تنسيق جدولي، ونوضح كيفية إنشاء ميزات النوافذ والتراجع، بالإضافة إلى الميزات التي تلتقط الموسمية والاتجاهات. سنغطي أفضل الممارسات لتشفير المتغيرات الفئوية، وتحليل السلاسل الزمنية، وتحديد القيم الشاذة، وتجنب الأخطاء الشائعة مثل تسرب البيانات والتحيز المتعلق بالمعرفة المسبقة. بالإضافة إلى ذلك، سنلمس مواضيع أكثر تقدماً مثل التقطع والتنبؤ الهرمي. كما ستتعمق الجلسة في طرق التحقق المتقاطع - وتحديدًا طرق الاختبار الخلفي المناسبة للبيانات الزمنية. وسنتناول لماذا لا يناسب التحقق المتقاطع التقليدي (K-fold) المجموعات البيانات المعتمدة على الزمن، وسنشير إلى الطرق البديلة مع مناقشة إيجابياتها وسلبياتها. وأخيرًا، سنستعرض أفضل الممارسات لتقييم أداء النموذج. ويشمل ذلك نظرة شاملة على مقاييس الخطأ، مناقشة نقاط قوتها وضعفها والسياقات التي ينبغي استخدام كل مقياس فيها. **نبذة عن المحاضر:** فلاديمير هو عالم بيانات كبير متعدد المهارات، يتمتع بخبرة واسعة في تعلم الآلة والإحصاءات والبرمجة وتكنولوجيا الحوسبة السحابية. تشمل اهتماماته البحثية التنبؤ، التسعير، ومعالجة اللغة الطبيعية (NLP)، وتعلم الآلة القابل للتفسير. خارج العمل، يستمتع بالسفر، وحل التحديات الخوارزمية على منصة LeetCode، والغوص أكثر في أبحاث تعلم الآلة. LinkedIn: https://www.linkedin.com/in/vladimir-vadim-iurcovschi-6a8620163/ انضموا إلينا في اللقاء يوم الجمعة، 19 سبتمبر، الساعة 7:00 مساءً! \- https://meet\.google\.com/swk\-zamj\-gkf نتطلع لرؤيتكم! فريق التنظيم