جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في المقام الأول يأتي النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة ومبنية على البيانات؟ في هذه الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنتشارك نتائج دراسة قمنا بها لاختبار 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل الطول الزائد، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نأمل أن تحصلوا على رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء الاختبارات المعيارية والضجة الإعلامية - وماذا يعني ذلك عند بناء أدوات مساعدة للبرمجة، ومساعدات مطورين، ووكلاء متعددي الوسائط.