جميعهم يبنون وكلاء الذكاء الاصطناعي - ولكن في الجوهر يوجد النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة وقائمة على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. سنشارك نتائج دراسة جرى فيها اختبار 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل الطول الزائد، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع تقديم رؤى واضحة حول أداء النماذج الحالية فعليًا - بعيدًا عن المعايير المرجعية والإثارة الإعلامية - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة للبرمجة، ومساعدات المطورين، والوكلاء متعددي الوسائط.