جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في المحور يوجد نموذج اللغة الكبير، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة وقائمة على البيانات؟ في هذه الجلسة، سنغوص في موضوع اختيار نماذج اللغة الكبيرة. وسنزود بنتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل حجم الإخراج، زمن الاستجابة، التكلفة، الدقة، وكم المعلومات المستفادة. نتوقع تقديم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء الاختبارات القياسية والضجة الإعلامية - وما يعنيه ذلك لبناء أدوات مساعدة للبرمجة، ومساعدات المطورين، والوكلاء متعددي الوسائط.