جميعهم يبنون وكلاء ذكاء اصطناعي - ولكن في الجوهر يوجد نموذج اللغة الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة وقائمة على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار نماذج اللغة الكبيرة. وسنشارك نتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل حجم الإخراج، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع تقديم رؤى واضحة حول أداء النماذج الحالية فعليًا - بعيدًا عن المعايير المرجعية والضجة الإعلامية - وما يعنيه ذلك لبناء أدوات مساعدة في البرمجة، ومساعدات المطورين، والوكلاء متعددي الوسائط.