جميعهم يبنون وكلاء الذكاء الاصطناعي - ولكن في المحور يكمن النموذج اللغوي الكبير (LLM)، واختيار النموذج الصحيح أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة ومبنية على البيانات؟ في هذه الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. سنشارك نتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل الحشو اللفظي، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع أن تقدم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والضجة الإعلامية - وما يعنيه ذلك لبناء مساعدين برمجيين، ومساعدات مطورين، ووكلاء متعددي الوسائط.