يعمل الجميع على بناء وكلاء ذكاء اصطناعي - ولكن في جوهرها توجد النماذج اللغوية الكبيرة (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة وقائمة على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية. وسنشارك نتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل التفاصيل الزائدة، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع أن تقدم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والإثارة الإعلامية - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة في البرمجة، ومساعدات المطورين، والوكلاء متعددي الوسائط.