يعمل الجميع على بناء وكلاء ذكاء اصطناعي - ولكن في المحور يوجد النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة وقائمة على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. سنشارك نتائج دراسة اختبرت 15 نموذجًا رائدة في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل التكرار، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع أن تُظهر هذه الدراسة رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والإثارة الإعلامية - وماذا يعني ذلك بالنسبة لبناء مساعدي البرمجة، ومساعدي المطورين، والوكلاء متعددي الوسائط.