يعمل الجميع على بناء وكلاء الذكاء الاصطناعي - ولكن في المحور يوجد النموذج اللغوي الكبير (LLM)، واختيار النموذج المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مستنيرة وقائمة على البيانات؟ في هذه الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنشارك نتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل الطول الزائد، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع تقديم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء المعايير المرجعية والضجة الإعلامية - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة في البرمجة، ومساعدات للمطورين، وأدوات وكلاء متعددة الوسائط.